Frequently Asked Questions List
This is a list of common questions regarding Queueing Theory, with succinct
answers, and links to relevant parts of this web site, where applicable.
-
What is queueing theory?
Queueing Theory is concerned with the study of queues, in the hope
of accurately modelling them, so that the length and size of delays can
be minimised within given constraints. For more information, see our
introduction.
-
What can queueing theory be used for?
There are many uses of queueing theory, including facility
design (e.g. banks, shops, post sorting offices), traffic
management (e.g. car flow, telecommunications), and scheduling
(e.g. appointment times). Uses occur in computing, and cover things as
diverse as packet routing in networks to print queues.
-
Why should I be interested?
Queueing Theory can save you both money and time in many situations
(see question 2), and has direct relevance to computer science in two main
ways - analysing the results of queueing theory in complicated situations,
and using queueing theory to make computers more responsive.
-
How accurate is queueing theory?
The accuracy depends largely on the accuracy of the data being used
to construct the model. If the input data is accurate then the theory
will give accurate results, as long as the type of the queue being modelled
is correctly picked.
-
Isn't this very complicated?
The general equations are highly complicated, and some of the maths
used to derive some equations is very complex, however the equations used
to find specific details on a queue are quite easy to use.
-
Can you give a specific place to find out data on a particular queueing
question?
The reference [PAGE72] contains
lots of tables as appendices which give average wait times, the chance
a customer does not have to wait, and other such information for common
queueing models.
-
What is the correct spelling: 'Queueing' or 'Queuing' ?
According to the Oxford English Dictionary, both spellings are correct
and allowable. The former seems to be preferred, and is in this author's
opinion.
Andrew
Ferrier and Henry Morgan, 13
June 1999